The secreted factor netrin-1 is upregulated in a fraction of human cancers as a mechanism to block apoptosis induced by netrin-1 dependence receptors DCC and UNC5H. Targeted therapies aiming to trigger tumour cell death via netrin-1/receptors interaction interference are under preclinical evaluation. We show here that Doxorubicin, 5-Fluorouracil, Paclitaxel and Cisplatin treatments trigger, in various human cancer cell lines, an increase of netrin-1 expression which is accompanied by netrin-1 receptors increase. This netrin-1 upregulation which appears to be p53-dependent is a survival mechanism as netrin-1 silencing by siRNA is associated with a potentiation of cancer cell death upon Doxorubicin treatment. We show that candidate drugs interfering with netrin-1/netrin-1 receptors interactions potentiate Doxorubicin, Cisplatin or 5-Fluorouracil-induced cancer cell death in vitro. Moreover, in a model of xenografted nude mice, we show that systemic Doxorubicin treatment triggers netrin-1 upregulation in the tumour but not in normal organs, enhancing and prolonging tumour growth inhibiting effect of a netrin-1 interfering drug. Together these data suggest that combining conventional chemotherapies with netrin-1 interference could be a promising therapeutic approach.